ibm_QC

【初級】量子コンピューターを「使う」時代に!?

Pocket
LINEで送る

コンピューターの性能は年々向上しており、普段使うスマートフォンにおいては不自由を感じない人も多いと思います。

しかし、未だ現在のコンピューターでは困難な計算もあります。
その一つが電子のシミュレーションです。

あらゆる物質の中には電子が存在しています。電子は、わたしたちの目ではもちろん、顕微鏡でも見ることが難しいため、シミュレーションといってコンピューターで物理法則にしたがった計算をすることでどのような状態であるかを調べます。

電子のシミュレーションが可能になると「どのような薬がよく効くか」「どのような太陽電池が効率がいいのか」など様々なことが、実際にその物質をつくらなくともわかるようになります。

このようなシミュレーションに、量子コンピューターという新たな計算方式のコンピューターが役立つと期待されています。
十数年前まで量子コンピューターは理論上のものでしたが、近年は実際につくられるようになってきました。
小規模な量子コンピューターなら私たちも使うことができます。(たとえばIBMのサイトでは5量子ビットの量子コンピューターを試せます。)

今回は、「実際の量子コンピューターを用いて、電子のシミュレーションに成功した」という研究を紹介します!

今日は量子コンピューターについての話じゃ!


名前は聞いたことあるよ!
でも,量子コンピューターってなに??


量子力学を使ったコンピューターじゃ!


えー??
それだけじゃわからないよ!


そうじゃな。
では、簡単に従来のコンピューターとの違いを説明しよう。

従来のコンピューターでは、計算を行うために0か1のどちらかを示す装置を使う。

たとえば、これは0じゃ。


classical_bit

聞いたことあるよ!たしか2進数っていって大きな数字も0と1を使ってあらわすんだよね!


そうじゃ。

一方で量子コンピューターで使う装置は0か1のどちらを示すのかが決まっていない場合もあるんじゃ。こんな風にな。


qubit

不思議だね〜!


量子コンピューターでは0と1のどちらになりやすいかを操ることで計算をするんじゃ。
0になりやすくしたり、1になりやすくしたり、という感じじゃ。


そんな計算方法が何の役にたつのー??


実はな、この計算方法は量子力学が必要な計算と相性が良いんじゃ。
その一つが「電子のシミュレーション」じゃ。


電子のシミュレーションって??


物質は原子が集まることによって成り立っている。
君もそうじゃ。かなーりたくさんの原子が集まっている。

そして原子は原子核とその周りをとびまわる「電子」からなっている。
知りたいのは「電子」がどのようにとびまわるかじゃ。

(実際には電子は原子核の周りに確率分布として広がっていますが、本記事では「とびまわっている」と表現しています。)


simple_molecule

電子のとびまわりかたがわかると何がうれしいの?


電子のとびまわり方がわかると、その物質の形(構造)がわかるんじゃ。

たとえば、病気の原因になる物質の形がわかれば、それに最も合うような薬がつくれたりもする!


へぇー!
量子コンピューターでどこまでシミュレーションできるようになったの?


まだ、一番簡単な分子である水素H2や、複雑な分子でもBeH2までじゃ。


周期表の上のほうからだんだん進んできてるんだね!


periodic_table

この程度の分子はいまあるコンピューターでもシミュレーションができるのじゃが、いずれは従来のコンピューターで不可能だったシミュレーションも量子コンピューターでできるようになるかもしれんな!


今後の発展に期待だね!!


そうじゃな、わしも待ち遠しい!


-quantum computer, 初級

  関連記事

thunderbolt
雷雲で起こる宇宙スケールの現象って? ~意外と知らない雷のヒミツ~

うだるように暑い夏の日、にわか雨と一緒にやってくる『雷』。大きな音と強い光でおなじみの雷には、まだ多くの謎が残されていることを知っていましたか? 今回は高校生二 ...

def1e8220c67e89c481bdaf7484065ed_s
超伝導ってなに?

今回の記事は「超伝導」についてのお話しをしたいと思います。 超伝導。 誰もが一度は耳にしたことがある言葉ではないでしょうか。 超伝導は物理学で最も研究が盛んに行 ...

171009-2D-magnet-icon
今までの常識を破る「二次元磁石」の発見!?

二次元における物理は21世紀物理の大きなテーマですが、二次元の「磁石」はこれまで見つかっていませんでした。しかしついに今年、Natureで「二次元磁石を発見した ...

ナノカーeyecatch
世界最小の車、はやく走らせるには?

今回は、2017年4月に行われた世界最小の車の速さを競った、ナノカーレースの科学について紹介します。ナノカーとはなにでできているのか、どんな仕組みで走るのか、ど ...

180730-Magic-Angle-icon
21世紀物理の革命!?「マジック・アングル」の実現

今年、2018年の春に、世界中を沸かせた発見がありました。そのキーワードは「マジック・アングル」。日本語にすると「魔法の角度」です。 この発見とは何なのか?それ ...

oil_icatch
油が自動で移動する、材料表面の新しい加工法を開発

液体が...ひとりでに一箇所に集まっていく... そんな研究が、フィンランドの研究グループによって報告されました。 油汚れをひとりでに弾き飛ばす表面や、僅かな量 ...

icon2
時間と空間の織り成す「時空間結晶」とは?

結晶と聞くと何を思い浮かべるでしょうか? なんとなくきれいな形のものというイメージがありますが、実はパソコンやスマートフォンをはじめとして身の回りでもたくさん使 ...

nobel
2016年のノーベル物理学賞は物質における"トポロジカル"な理論!?

2016年のノーベル物理学賞は「物質におけるトポロジカル理論」 2016年10月4日、ノーベル物理学賞の受賞者が発表されました。受賞したのはDavid J. T ...

Lorenz
カオスの同期現象

みなさんは、「カオス」という現象をご存じでしょうか?カオスとは、「予測ができるはずなのに予測ができない」現象のことで、多くの研究者の興味を惹きつけています。この ...

トップアイキャッチ
磁力による物質加工が可能に

磁石の力でモノを加工できるかもしれない! こんな研究成果が2016年3月に発表されました。 この研究から、私たちが毎日のように使っている、パソコンやスマートフォ ...